Knowledge Intensive Learning: Combining Qualitative Constraints with Causal Independence for Parameter Learning in Probabilistic Models

نویسندگان

  • Shuo Yang
  • Sriraam Natarajan
چکیده

In Bayesian networks, prior knowledge has been used in the form of causal independencies between random variables or as qualitative constraints such as monotonicities. In this work, we extend and combine the two different ways of providing domain knowledge. We derive an algorithm based on gradient descent for estimating the parameters of a Bayesian network in the presence of causal independencies in the form of Noisy-Or and qualitative constraints such as monotonicities and synergies. Noisy-Or structure can decrease the data requirements by separating the influence of each parent thereby reducing greatly the number of parameters. Qualitative constraints on the other hand, allow for imposing constraints on the parameter space making it possible to learn more accurate parameters from a very small number of data points. Our exhaustive empirical validation conclusively proves that the synergy constrained Noisy-OR leads to more accurate models in the presence of smaller amount of data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knowledge Intensive Learning: Combining Qualitative Constraints with Causal Independence for Parameter Learning in Probabilistic Models By

Shuo Yang Medical problems are examples of knowledge-rich and data-poor domains. There is abounding knowledge about the target features ascribing to the centuries of medical research while the positive samples are rare due to the peculiarity of some diseases. Because the training data is so sparse, a learning algorithm that builds predictive models must be able to exploit the availability of su...

متن کامل

A Bayesian Approach to Learning Causal Networks

Whereas acausal Bayesian networks represent probabilistic independence, causal Bayesian networks represent causal relationships. In this paper, we examine Bayesian methods for learning both types of networks. Bayesian methods for learning acausal networks are fairly well developed. These methods often employ assumptions to facilitate the construction of priors, including the assumptions of para...

متن کامل

The Effect of Knowledge & Learning on Perception and Experience of Independence among Patients with Spinal Cord Injury

Purpose: Individuals’ personal awareness and learning after spinal cord injury is one of the most important factors in patients’ confrontation with subsequent disabilities and new life style which affects their ultimate independence. This article is an abstracted result of a qualitative study on effective factors of independence among patients with spinal cord injury. Methods: This study a...

متن کامل

Learning First-Order Probabilistic Models with Combining Rules Learning First-Order Probabilistic Models with Combining Rules

Many real-world domains exhibit rich relational structure and stochasticity and motivate the development of models that combine predicate logic with probabilities. These models describe probabilistic influences between attributes of objects that are related to each other through known domain relationships. To keep these models succinct, each such influence is considered independent of others, w...

متن کامل

Causal Networks Learning Acausal Networks Learning Influence Diagrams Learning Causal-Network Parameters Learning Causal-Network Structure Learning Hidden Variables Learning More General Causal Models Advances: Learning Causal Networks

Bayesian methods have been developed for learning Bayesian networks from data. Most of this work has concentrated on Bayesian networks interpreted as a representation of probabilistic conditional independence without considering causation. Other researchers have shown that having a causal interpretation can be important, because it allows us to predict the effects of interventions in a domain. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013